博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
04-树4. Root of AVL Tree (25)
阅读量:6240 次
发布时间:2019-06-22

本文共 3287 字,大约阅读时间需要 10 分钟。

04-树4. Root of AVL Tree (25)

时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

    

    

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print ythe root of the resulting AVL tree in one line.

Sample Input 1:
588 70 61 96 120
Sample Output 1:
70
Sample Input 2:
788 70 61 96 120 90 65
Sample Output 2:
88
 
#include 
struct Node { int val; int height; struct Node *left; struct Node *right;};int max(int a, int b) { //返回两者较大者 return a > b ?

a : b; } int height(struct Node* root) { //为了兼容空树,树高度不能直接返回根节点的height属性 if (root == NULL) { return -1; } else { return root->height; } } struct Node* RRrotation(struct Node* k1) { //右右旋转 struct Node* k2 = k1->right; //k2为根节点k1的右儿子 k1->right = k2->left; //将k2的左儿子连接到k1的右子节点 k2->left = k1; //将k1连接到k2的左子节点 k1->height = max(height(k1->left), height(k1->right)) + 1; //更新节点高度。仅仅有k1。k2节点高度变化 k2->height = max(height(k2->left), height(k2->right)) + 1; return k2; } struct Node* LLrotation(struct Node* k1) { //左左旋转 struct Node* k2 = k1->left; k1->left = k2->right; k2->right = k1; k1->height = max(height(k1->left), height(k1->right)) + 1; k2->height = max(height(k2->left), height(k2->right)) + 1; return k2; } struct Node* RLrotation(struct Node* k1) { //右左旋转 //分两步:先对根节点的右子树做左左旋转,再对根做右右旋转 k1->right = LLrotation(k1->right); return RRrotation(k1); } struct Node* LRrotation(struct Node* k1) { //左右旋转 k1->left = RRrotation(k1->left); return LLrotation(k1); } struct Node* insertAvlTree(struct Node* node, struct Node* root) { if (root == NULL) { root = node; return root; } if (node->val > root->val) { root->right = insertAvlTree(node, root->right); //插入右子树 if (height(root->right) - height(root->left) == 2) { if (node->val > root->right->val) { //假设插入右子树的右子树,进行右右旋转 root = RRrotation(root); } else if (node->val < root->right->val) { //进行右左旋转 root = RLrotation(root); } } } else if (node->val < root->val) { //插入左子树情况与上面相似 root->left = insertAvlTree(node, root->left); if (height(root->left) - height(root->right) == 2) { if (node->val < root->left->val) { root = LLrotation(root); } else if(node->val > root->left->val) { root = LRrotation(root); } } } //递归中不断更新插入节点到根节点路径上全部节点的高度 root->height = max(height(root->left), height(root->right)) + 1; return root; } int main() { freopen("test.txt", "r", stdin); int n; scanf("%d", &n); struct Node nodes[20]; struct Node *root = NULL; for (int i = 0; i < n; ++i) { //初始化一个节点,并插入AVL树中 scanf("%d", &nodes[i].val); nodes[i].height = 0; //孤立的节点高度为0 nodes[i].left = NULL; nodes[i].right = NULL; root = insertAvlTree(&nodes[i], root); } printf("%d", root->val); return 0; }

题目链接:http://www.patest.cn/contests/mooc-ds/04-%E6%A0%914

转载地址:http://tkdia.baihongyu.com/

你可能感兴趣的文章
UVA 12118 Inspector's Dilemma(连通性,欧拉路径,构造)
查看>>
一台电脑同时运行多个tomcat配置方法
查看>>
让文本框只能输入数字
查看>>
pwnable.kr 之 passcode write up
查看>>
多任务之协程浅谈
查看>>
Qt Creator快捷键
查看>>
idea中lombok的使用
查看>>
网站集成支付宝在线支付
查看>>
mac下安装appium
查看>>
js ---- 函数防抖
查看>>
js call 和 apply
查看>>
CentOS 6.5下Percona Xtrabackup的安装错误解决方案
查看>>
VCS双机+oracle 11gR2+ASM主机名修改
查看>>
转:// LINUX下为ORACLE数据库设置大页--hugepage
查看>>
Linux文件权限与属性详解 之 chattr & lsattr
查看>>
负载均衡集群之LVS配置命令
查看>>
PHP使用文件流下载文件方法(附:解决下载文件内容乱码问题)
查看>>
多线程编程
查看>>
再谈谈数学
查看>>
Scheme来实现八皇后问题(1)
查看>>